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Introduction
It is often possible to model real systems by using the same or similar random experiments and
their associated random variables. Numerical random variables may be classified in two broad but
distinct categories called discrete random variables and continuous random variables. Often, discrete
random variables are ae
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1. Discrete probability distributions
We shall look at discrete distributions in this Workbook and continuous distributions in 38.
In order to get a good understanding of discrete distributions it is advisable to familiarise yourself



Example 1
Write out the possible permutations of the letters A, B, C and D.

Solution

The possible permutations are

ABCD ABDC ADBC ADCB ACBD ACDB
BADC BACD BCDA BCAD BDAC BDCA
CABD CADB CDBA CDAB CBAD CBDA
DABC DACB DCAB DCBA DBAC DBCA

There are 4! = 24 permutations of the four letters A, B, C and D.

In general we can order n distinct objects in n! ways.
Suppose we have r different types of object. It follows that if we have n1 objects of one kind, n2 of
another kind and so on then the n1 objects can be ordered in n1! ways, the n2 objects in n2! ways
and so on. If n1 + n2 + · · · + nr = n and if p is the number of permutations possible from n objects
we may write

p × (n1! × n2! × · · · × nr!) = n!

and so p is given by the formula

p =
n!

n1! × n2! × · · · × nr!

Very often we will find it useful to be able to calculate the number of permutations of n objects
taken r at a time. Assuming that we do not allow repetitions, we may choose the first object in n
ways, the second in n − 1 ways, the third in n − 2 ways and so on so that the rth object may be
chosen in n − r + 1 ways.

Example 2
Find the number of permutations of the four letters A, B, C and D taken three
at a time.

Solution

We may choose the first letter in 4 ways, either A, B, C or D. Suppose, for the purposes of
illustration we choose A. We may choose the second letter in 3 ways, either B, C or D. Suppose,
for the purposes of illustration we choose B. We may choose the third letter in 2 ways, either C
or D. Suppose, for the purposes of illustration we choose C. The total number of choices made is
4 × 3 × 2 = 24.
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In general the numbers of permutations of n objects taken r at a time is

n(n − 1)(n − 2) . . . (n − r + 1) which is the same as
n!

(n − r)!

This is usually denoted by nPr so that

nPr =
n!

(n − r)!

If we allow repetitions the number of permutations becomes nr (can you see why?).

Example 3
Find the number of permutations of the four letters A, B, C and D taken two at
a time.

Solution

We may choose the first letter in 4 ways and the second letter in 3 ways giving us

4 × 3 =
4 × 3 × 2 × 1

1 × 2
=

4!

2!
= 12 permutations

Combinations
A combination of objects takes no account of order whereas a permutation does. The formula
nPr =

n!

(n − r)!
gives us the number of ordered sets of r objects chosen from n. Suppose the number

of sets of r objects (taken from n objects) in which order is not taken into account is C. It follows
that

C × r! =
n!

(n − r)!
and so C is given by the formula C =

n!

r!(n − r)!

We normally denote the right-hand side of this expression by nCr so that

nCr =
n!

r!(n − r)!
A common alternative notation for nCr is

(
n
r

)
.

Example 4
How many car registrations are there beginning with NP05 followed by three
letters? Note that, conventionally, I, O and Q may not be chosen.

Solution

We have to choose 3 letters from 23 allowing repetition. Hence the number of registrations beginning
with NP05 must be 233 = 12167.

HELM (2008):
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(a) How many different signals consisting of five symbols can be sent using the
dot and dash of Morse code?

(b) How many can be sent if five symbols or less can be sent?

Your solution

Answer
(a) Clearly, the order of the symbols is important. We can choose each symbol in two ways, either

a dot or a dash. The number of distinct signals is

2 × 2 × 2 × 2× = 25 = 32

(b) If five or less symbols may be used, the total number of signals may be calculated as follows:

Using one symbol: 2 ways

Using two symbols: 2 × 2 = 4 ways

Using three symbols: 2 × 2 × 2 = 8 ways

Using four symbols: 2 × 2 × 2 × 2 = 16 ways
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2. Random variables
A random variable X is a quantity whose value cannot be predicted with certainty. We assume that
for every real number a the probability P(X = a) in a trial is well-defined. In practice, engineers are
often concerned with two broad types of variables and their probability distributions: discrete random
variables and their distributions, and continuous random variables and their distributions. Discrete
distributions arise from experiments involving counting, for example, road deaths, car production
and aircraft sales, while continuous distributions arise from experiments involving measurement, for
example, voltage, corrosion and oil pressure.

Discrete random variables and probability distributions
A random variable X and its distribution are said to be discrete if the values of X can be presented
as an ordered list say x1, x2, x3, . . . with probability values p1, p2, p3, . . . . That is P(X = xi) = pi.
For example, the number of times a particular machine fails during the course of one calendar year
is a discrete random variable.

More generally a discrete distribution f(x) may be defined by:

f(x) =

{
pi if x = xi i = 1, 2, 3, . . .
0 otherwise

The distribution function F (x) (sometimes called the cumulative distribution function) is obtained
by taking sums as defined by

F (x) =
∑
xi≤x

f(xi) =
∑
xi≤x

pi

We sum the probabilities pi for which xi is less than or equal to x. This gives a step function with
jumps of size pi at each value xi of X. The step function is defined for all values, not just ts, -114ned fox



Example 5
Turbo Generators plc manufacture seven large turbines for a customer. Three of
these turbines do not meet the customer’s specification. Quality control inspectors
choose two turbines at random. Let the discrete random variable X be defined to
be the number of turbines inspected which meet the customer’s specification.

(a) Find the probabilities that X takes the values 0, 1 or 2.

(b) Find and graph the cumulative distribution function.

Solution

(a) The possible values of X are clearly 0, 1 or 2 and may occur as follows:

Sample Space Value of X
Turbine faulty, Turbine faulty 0
Turbine faulty, Turbine good 1
Turbine good, Turbine faulty 1
Turbine good, Turbine good 2

We can easily calculate the probability that X takes the values 0, 1 or 2 as follows:

P(X = 0) =
3

7
× 2

6
=

1

7
P(X = 1) =

4

7
× 3

6
+

3

7
× 4

6
=

4

7
P(X = 2) =

4

7
× 3

6
=

2

7

The values of F (x) =
∑
xi≤x

P(X = xi) are clearly

F (0) =
1

7
F (1) =

5

7
and F (2) =

7

7
= 1

(b) The graph of the step function F (x) is shown below.

Figure 1
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3. Mean and variance of a discrete probability distribution
If an experiment is performed N times in which the n possible outcomes X = x1, x2, x3, . . . , xn are
observed with frequencies f1, f2, f3, . . . , fn respectively, we know that the mean of the distribution
of outcomes is given by

x̄ =
f1x1 + f2x2 + . . . + fnxn

f1 + f2 + . . . + fn

=

n∑
i=1

fixi

n∑
i=1

fi

=
1

N

n∑
i=1

fixi =
n∑

i=1

(
fi

N

)
xi

(Note that
n∑

i=1

fi = f1 + f2 +



E[g(X)] =
n∑
i

g(xi)f(xi)

In particular if g(X) = X
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Example 6

A traffic engineer is interested in the number of vehicles reaching a particular
crossroads during periods of relatively low traffic flow. The engineer finds that
the number of vehicles X reaching the crossroads per minute is governed by the
probability distribution:

x 0 1 2 3 4
P(X = x) 0.37 0.39 0.19 0.04 0.01

(a) Calculate the expected value, the variance and the standard deviation of the

random variable X.

(b) Graph the probability distribution P(X = x) and the corresponding cumulative

probability distribution F (x) =
∑
xi≤x

P(X = xi).

Solution

(a) The expectation, variance and standard deviation and cumulative probability values are calculated
as follows:

x x2 P(X = x) F (x)
0 0 0.37 0.37
1 1 0.39 0.76
2 4 0.19 0.95
3 9 0.04 0.99
4 16 0.01 1.00

E(X) =
4∑

x=0

xP(X = x)

= 0 × 0.37 + 1 × 0.39 + 2 × 0.19 + 3 × 0.04 + 4 × 0.01

= 0.93

V(X) = E(X2) − [E(X)]2

=
4∑

x=0

x2P(X = x) −

[
4∑

x=0

xP(X = x)

]2

= 0 × 0.37 + 1 × 0.39 + 4 × 0.19 + 9 × 0.04 + 16 × 0.01 − (0.93)2

= 0.8051

The standard deviation is given by σ =
√



Solution (contd.)

(b)

x

F (x)

0 1 2

P(X = x)

0.2

0.4

0.6

0.8

1.0

3 4
x

0 1 2

0.2

0.4

0.6

0.8

1.0

3 4

Figure 2
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Exercises

1. A machine is operated by two workers. There are sixteen workers available. How many possible
teams of two workers are there?

2. A factory has 52 machines. Two of these have been given an experimental modification. In the
first week after this modification, problems are reported with thirteen of the machines. What
is the probability that both of the modified machines are among the thirteen with problems
assuming that all machines are equally likely to give problems,?

3. A factory has 52 machines. Four of these have been given an experimental modification. In
the first week after this modification, problems are reported with thirteen of the machines.
What is the probability that exactly two of the modified machines are among the thirteen with
problems assuming that all machines are equally likely to give problems?

4. A random number generator produces sequences of independent digits, each of which is as
likely to be any digit from 0 to 9 as any other. If X denotes any single digit, find E(X).

5. A hand-held calculator has a clock cycle time of 100 nanoseconds; these are positions numbered
0, 1, . . . , 99. Assume a flag is set during a particular cycle at a random position. Thus, if X is
the position number at which the flag is set.

P(X = k) =
1

100
k = 0, 1, 2, . . . , 99.

Evaluate the average position number E(X), and σ, the standard deviation.

(Hint: The sum of the first k integers is k(k + 1)/2 and the sum of their squares is:k(k



Answers

1. The required number is(
16
2

)
=

16 × 15

2 × 1
= 120.

2. There are(
52
13

)
possible different selections of 13 machines and all are equally likely. There is only(

2
2

)
= 1

way to pick two machines from those which were modified but there are(
50
11

)
different choices for the 11 other machines with problems so this is the number of possible
selections containing the 2 modified machines.

Hence the required probability is(
2
2

) (
50
11

)
(

52
13

) =

(
50
11

)
(

52
13

)
=

50!/(11!39!)

52!/(13!39!)

=
50!13!

52!11!

=
13 × 12

52 × 51
≈ 0.0588

Alternatively, let S be the event “first modified machine is in the group of 13” and C be the
event “second modified machine is in the group of 13”. Then the required probability is

P(S) × P(C | S) =
13

52
× 12

51
.

14 HELM (2008):
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Answers

3. There are

(
52
13

)
different selections of 13,

(
4
2

)
different choices of two modified machines

and

(
48
11

)
different choices of 11 non-modified machines.

Thus the required probability is(
4
2

) (
48
11

)
(

52
13

) =
(4!/2!2!)(48!/11!37!)

(52!/13!39!)

=
4!48!13!39!

52!2!2!11!37!

=
4 × 3 × 13 × 12 × 39 × 38

52 × 51 × 50 × 49 × 2
≈ 0.2135

Alternatively, let I(i) be the event “modified machine i is in the group of 13” and O(i)

be the negation of this, for i = 1, 2, 3, 4. The number of choices of two modified machines is(
4
2

)
so the required probability is(

4
2

)
P{I(1)} × P{I(2) | I(1)} × P{O(3) | I(1), I(2)} × P{O(4) | I(1)I(2)O(3)}

=

(
4
2

)
13

52
× 12

51
× 39

50
× 38

49

=
4 × 3 × 13 × 12 × 39 × 38

52 × 51 × 50 × 49 × 2

4.
x 0 1 2 3 4 5 6 7 8 9

P(X = x) 1/10
1/10

1/10
1/10

1/10
1/10

1/10
1/10

1/10
1/10

E(X) =
1

10
{0 + 1 + 2 + 3 + . . . + 9} = 4.5

HELM (2008):
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Answers

5. Same as Q.4 but with 100 positions

E(X) =
1

100
{0 + 1 + 2 + 3 + . . . + 99} =

1

100

[
99(99 + 1))

2

]
= 49.5

σ2 = mean of squares − square of means

∴ σ2 =
1

100
[12 + 22 + . . . + 992] − (49.5)2

=
1

100

[-3.269 0.239 l05559 0.239 l
d1(9)]T9 0.]J
ET
1 0 0 1 167.864 118.26 cm
q
[]0 d
0 J
0.478 w
0 0.239 m
17.71.537239 l
S
Q
1 0 0 1 -167.864 1188.26 cm
BT
/F15 11.955 Tf 167295  Td[.309 Td[(10)6J/F29 11.955 Tf 5.9429 T.201 Td[(f)]0�]TJ/F26 11.955 Tf 24.761 0 Td[(me)TJ/F15 11.955 Tf 3.252 0 Td[(5)]TJ/F26 1.97 Tf 10.5  T3936 Td[(2)]TJ/F15 11.955 Tf -1854 -3.936 Td[(=)]TJ7(49)8]TJ/F24 71.955 Tf 24.15 10 Td[(:)-16/F15 11.955 Tf 3.252 0 Td[(5)]]TJ/F15 11.955 Tf 13.- 0 3 l4.104 9d[(1)]so26(sq)th327(o)1st(n)-3271(d7(r)1(e)-d27(o)1d1(s)]viate)-i(s)]on of
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The Binomial
Distribution
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Introduction
A situation in which an experiment (or trial) is repeated a fixed number of times can be modelled,
under certain assumptions, by the binomial distribution. Within each trial we focus attention on
a particular outcome. If the outcome occurs we label this as a success. The binomial distribution
allows us to calculate the probability of observing a certain number of successes in a given number
of trials.

You should note that the term ‘success’ (and by implication ‘failure’) are simply labels and as such
might be misleading. For example counting the number of defective items produced by a machine
might be thought of as counting successes if you are looking for defective items! Trials with two
possible outcomes are often used as the building blocks of random experiments and can be useful to
engineers. Two examples are:

1. A particular mobile phone link is known to transmit 6% of ‘bits’ of information in error. As an
engineer you might need to know the probability that two bits out of the next ten transmitted
are in error.

2. A machine is known to produce, on average, 2% defective components. As an engineer you
might need to know the probability that 3 items are defective in the next 20 produced.



1. The binomial model
We have introduced random variables from a general perspective and have seen that there are two
basic types: discrete and continuous. We examine four particular examples of distributions for
random variables which occur often in practice and have been given special names. They are the
binomial distribution, the Poisson distribution, the Hypergeometric distribution and the Normal
distribution. The first three are distributions for discrete random variables and the fourth is for a
continuous random variable. In this Section we focus attention on the binomial distribution.
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Example 7
In a box of floppy discs it is known that 95% will work. A sample of three of the
discs is selected at random.
Find the probability that (a) none (b) 1, (c) 2, (d) all 3 of the sample will work.

Solution

Let the event {the disc works} be W and the event {the disc fails} be F . The probability that a
disc will work is denoted by P(W ) and the probability that a disc will fail is denoted by P(F ). Then
P(W ) = 0.95 and P(F ) = 1 − P(W ) = 1 − 0.95 = 0.05.

(a) The probability that none of the discs works equals the probability that all 3 discs fail.
This is given by:

P(none work) = P(FFF ) = P(F )×P(F )×P(F ) as the events are independent

= 0.05×0.05×0.05 = 0.053 = 0.000125

(b) If only one disc works then you could select the three discs in the following orders

(FFW ) or (FWF ) or (WFF ) hence

P(one works) = P(FFW )+P(FWF )+P(WFF )

= P(F )×P(F )×P(W )+P(F )×P(W )×P(F )+P(W )×P(F )×P(F )

= (0.05×0.05×0.95)+(0.05×0.95×0.05)+(0.



Example 8
A worn machine is known to produce 10% defective components. If the random
variable X is the number of defective components produced in a run of 3 compo-
nents, find the probabilities that X takes the values 0 to 3.









Example 10
In a box of switches it is known 10% of the switches are faulty. A technician is
wiring 30 circuits, each of which needs one switch. What is the probability that
(a) all 30 work, (b) at most 2 of the circuits do not work?

Solution

The answers involve binomial distributions because there are only two states for each circuit - it
either works or it doesn’t work.

A trial is the operation of testing each circuit.

A success is that it works. We are given P(success) = p = 0.9

Also we have the number of trials n = 30

Applying the binomial distribution P(X = r) = nCrp
r(1 − p)n−r.
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Example 11
A University Engineering Department has introduced a new software package called
SOLVIT. To save money, the University’s Purchasing Department has negotiated



Using the binomial model, and assuming that a success occurs with probability 1
5

in each trial, find the probability that in 6 trials there are

(a) 0 successes (b) 3 successes (c) 2 failures.

Let X be the number of successes in 6 independent trials.

Your solution

(a) P(X = 0) =

Answer

In each case p
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2. Expectation and variance of the binomial distribution
For a binomial distribution X ∼ B(n, p), the mean and variance, as we shall see, have a simple form.
While we will not prove the formulae in general terms - the algebra can be rather tedious - we will
illustrate the results for cases involving small values of n.

The case nnn === 222

Essentially, we have a random variable X which follows a binomial distribution X ∼ B(2, p) so that
the values taken by X (and X2 - needed to calculate the variance) are shown in the following table:

x x2 P(X = x) xP(X = x) x2P(X = x)
0 0 q2 0 0
1 1 2qp 2qp 2qp
2 4 p2 2p2 4p2

We can now calculate the mean of this distribution:

E(X) =
∑

xP(X = x) = 0 + 2qp + 2p2 = 2p(q + p) = 2p since q + p = 1

Similarly, the variance V (X) is given by

V (X) = E(X2) − [E(X)]2 = 0 + 2qp + 4p2 − (2p)2 = 2qp

Calculate the mean and variance of a random variable X which follows a binomial
distribution X ∼ B(3, p).

Your solution

HELM (2008):
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Answer
Consider the occurrence of a six, with X being the number of sixes thrown in 36 trials.

The random variable X follows a binomial distribution. (Why? Refer to page 18 for the criteria
if necessary). A trial is the operation of throwing a die. A success is the occurrence of a 6 on a
particular trial, so p = 1

6
. We have n = 36, p = 1

6
so that

E(X) = np = 36 × 1

6
= 6 and V (X) = npq = 36 × 1

6
× 5

6
= 5.

Hence the standard deviation is σ =
√

5 ' 2.236.

E(X) = 6 implies that in 36 throws of a fair die we would expect, on average, to see 6 sixes. This
makes perfect sense, of course.

HELM (2008):
Section 37.2: The Binomial Distribution
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Exercises

1. The probability that a mountain-bike rider travelling along a certain track will have a tyre burst
is 0.05. Find the probability that among 17 riders:

(a)
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Exercises continued
8. In a large school, 80% of the pupils like mathematics. A visitor to the school asks each of 4
pupils, chosen at random, whether they like mathematics.

(a) Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils

(b) Find the probability that the visitor obtains the answer yes from at least 2 pupils:

(i) when the number of pupils questioned remains at 4

(ii) when the number of pupils questioned is increased to 8.

9. A machine has two drive belts, one on the left and one on the right. From time to time the
drive belts break. When one breaks the machine is stopped and both belts are replaced. Details of n
consecutive breakages are recorded. Assume that the left and right belts are equally likely to break
first. Let X be the number of times the break is on the left.

(a) How many possible different sequences of “left” and “right” are there?

(b) How many of these sequences contain exactly j “lefts”?

(c) Find an expression, in terms of n and j, for the probability that X = j.

(d) Let n = 6. Find the probability distribution of X.

10. A machine is built to make mass-produced items. Each item made by the machine has a
probability p of being defective. Given the value of p, the items are independent of each other.
Because of the way in which the machines are made, p could take one of several values. In fact
p = X/100 where X has a discrete uniform distribution on the interval [0, 5]. The machine is tested



Exercises continued
13. There are five machines in a factory. Of these machines, three are working properly and two
are defective. Machines which are working properly produce articles each of which has independently
a probability of 0.1 of being imperfect. For the defective machines this probability is 0.2. A machine
is chosen at random and five articles produced by the machine are examined. What is the probability
that the machine chosen is defective given that, of the five articles examined, two are imperfect and
three are perfect?

14. A company buys mass-produced articles from a supplier. Each article has a probability p of being
defective, independently of other articles. If the articles are manufactured correctly then p = 0.05.
However, a cheaper method of manufacture can be used and this results in p = 0.1.

(a) Find the probability of observing exactly three defectives in a sample of twenty articles

(i) given that p = 0.05

(ii) given that p = 0.1.

(b) The articles are made in large batches. Unfortunately batches made by both methods
are stored together and are indistinguishable until tested, although all of the articles
in any one batch will be made by the same method. Suppose that a batch delivered
to the company has a probability of 0.7 of being made by the correct method. Find the
conditional probability that such a batch is correctly manufactured given that, in a sample
of twenty articles from the batch, there are exactly three defectives.

(c) The company can either accept or reject a batch. Rejecting a batch leads to a loss for
the company of £150. Accepting a batch which was manufactured by the cheap method
will lead to a loss for the company of £400. Accepting a batch which was correctly
manufactured leads to a profit of £500. Determine a rule for what the company should
do if a sample of twenty articles contains exactly three defectives, in order to maximise
the expected value of the profit (where loss is negative profit). Should such a batch be
accepted or rejected?

(d) Repeat the calculation for four defectives in a sample of twenty and hence, or otherwise,
determine a rule for how the company should decide whether to accept or reject a batch
according to the number of defectives.

32 HELM (2008):
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Answers

1. Binomial distribution P(X = r) = nCrp
r(1−p)n−



Answers

9.

(a) There are 2n possible sequences.

(b) The number containing exactly j “lefts” is

(
n
j

)
.

(c) P(X = j) =

(
n
j

)
2−n.

(d) With n = 6 the distribution of X is

j 0 1 2 3 4 5 6
P(X = j) 0.015625 0.09375 0.234375 0.3125 0.234375 0.09375 0.015625

10. Let Y be the number of the first defective item.

P(X = j | Y = 13) =
P(X = j) × P(Y = 13 | X = j)
5∑

i=0

P(X = i) × P(Y = 13 | X = i)

=
P(Y = 13 | X = j)∑5
i=0 P(Y = 13 | X = i)

since P(X = j) = 1/6 for j = 0, . . . , 5.

P(Y = 13 | X = j) =

(
1 − X

100

)12 (
X

100

)

j P(Y = 13 | X = j) P(X = j | Y = 13)
0 0.00000 0.0000
1 0.00886 0.0707
2 0.01569 0.1251
3 0.02082 0.1660
4 0.02451 0.1954
5 0.02702 0.2154
6 0.02856 0.2277

Total 0.12546 1

34 HELM (2008):
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Answers

11.

The probability of at least one defective in a batch is 1 − 0.910 = 0.6513.
Let the probability of at least one defective in exactly j batches be pj.

(a) p4 =

(
7
4

) (
1 − 0.910

)4 (
0.910

)3
= 35 × 0.65134 × 0.34873 = 0.2670.

(b)

p5 =

(
7
5

) (
1 − 0.910

)5 (
0.910

)2
= 21 × 0.65135 × 0.34872 = 0.2993.

p6 =

(
7
6

) (
1 − 0.910

)6 (
0.910

)1
= 7 × 0.65136 × 0.34871 = 0.1863.

p7 =

(
7
7

) (
1 − 0.910

)7 (
0.910

)0
= 0.65137 = 0.0497.

The probability of at least one defective in four or more of the batches is

p4 + p5 + p6 + p7 = 0.8023.

12.

(a) Let Y be the number of companies to which the engineer is called and let A denote the event
that the engineer is called to company A.

(i) P(Y = 4) = 0.14 = 0.0001.

(ii) P(Y ≥ 3) =

(
4
3

)
× 0.13 × 0.91 + 0.14 = 0.0037.

(iii) P(Y = 4 | Y ≥ 1) =
P(Y = 4 ∩ Y ≥ 1)

P(Y ≥ 1)

=
P(Y = 4)

P(Y ≥ 1)
=

0.0001

1 − 0.94
=

0.0001

0.3439
=

1

3439
= 0.0003.

(iv) P(Y = 4 | A) =
P(Y = 4 ∩ A)

P(A)

P(Y = 4)

P(A)=61(01)]TJ
ET
1 0 3cm
BT
/8/8/8/8/8/8/8/. 0 Tdd[(9.9t239 m
69.6 0.239 l
S
Q
145955(27 331.589 Td[(P)]TJ/F15 11.955 Tf 7.444 0 Td[(()]TJ/F26 11.25 2.677 Td[(�)]TJ/F15 11.955 Tf 5.48(00)1(01.25 2.677 Td[(�)]TJ/F1 000)]TJ/F1 000)]TJ/F1 000)]TJ/F1 0009.9nh753 0 Td[(:)]TJ/F15 11.955 Y00



Answers

13. Let D denote the event that the chosen machine is defective and D̄ denote the event
“not D”.
Let Y be the number of imperfect articles in the sample of five.
Then

P(D | Y = 2) =
P(D) × P(Y = 2 | D)

P(D) × P(Y = 2 | D) + P(D̄) × P(Y = 2 | D̄)

=

2
5

×
(

5
2

)
× 0.22 × 0.83

2
5

×
(

5
2

)
× 0.22 × 0.83 + 3

5
×

(
5
2

)
× 0.12 × 0.93

=
2 × 0.22 × 0.83

2 × 0.22 × 0.83 + 3 × 0.12 × 0.93

=
0.04096

0.04096 + 0.02187
= 0.6519.

14.

(a) (i) p3 =

(
20
3

)
0.13 × 0.917 =

20 × 19 × 18

1 × 2 × 3
× 0.13 × 0.97 = 0.190.

(ii)

p2 =

(
20
2

)
0.12 × 0.918 =

3

18
× 9 × p3 = 0.28518

p1 =

(
20
1

)
0.1 × 0.919 =

2

19
× 9 × p2 = 0.27017

p0 =

(
20
0

)
0.920 = 0.12158.

The total probability is 0.867.

(iii) The required probability is the probability of at most 2 out of 16.

p′
0 = P(0 out of 16) = 0.916 = 0.185302

p′
1 = P(1 out of 16) =

16

9
× p′

0 = 0.3294258

p′
2 = P(2 out of 16) =

15

2
× 1

9
× p′

1 = 0.2745215

(b)

0.2

(
4
1

)
× 0.31 × 0.73

0.2

(
4
1

)
× 0.31 × 0.73 + 0.9

(
4
1

)
× 0.11 × 0.93

=
0.02058

0.02058 + 0.05832
= 0.2608.
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The Poisson
Distribution

�
�

�
�37.3

Introduction
In this Section we introduce a probability model which can be used when the outcome of an experiment
is a random variable taking on positive integer values and where the only information available is a
measurement of its average value. This has widespread applications, for example in analysing traffic
flow, in fault prediction on electric cables and in the prediction of randomly occurring accidents. We
shall look at the Poisson distribution in two distinct ways. Firstly, as a distribution in its own right.
This will enable us to apply statistical methods to a set of problems which cannot be solved using
the binomial distribution. Secondly, as an approximation to the binomial distribution X ∼ B(n, p)
in the case where n is large and p is small. You will find that this approximation can often save the
need to do much tedious arithmetic.

�

�

�

�
Prerequisites

Before starting this Section you should . . .





®

Applying condition (1) allows us to approximate terms such as (n − 1), (n − 2), . . . to n (mathemat-
ically, we are allowing n → ∞ ) and the right-hand side of our expansion becomes

1 + np +
n2

2!
p2 + · · · +

nr

r!
pr + . . .

Note that the term pn → 0 under these conditions and hence has been omitted.
We now have the series

1 + np +
(np)2

2!
+ · · · +

(np)r

r!
+ . . .

which, using condition (3) may be written as

1 + λ +
(λ)2

2!
+ · · · +

(λ)r

r!
+ . . .

You may recognise this as the expansion of eλ.

If we are to be able to claim that the terms of this expansion represent probabilities, we must be sure
that the sum of the terms is 1. We divide by eλ to satisfy this condition. This gives the result

eλ

eλ
= 1 =

1

eλ
(1 + λ +

(λ)2

2!
+ · · · +

(λ)r

r!
+ . . . )

= e−λ + e−λλ + e−λ λ2

2!
+ e−λ λ3

3!
+ · · · + e−λ λr

r!
+ · · · +

The terms of this expansion are very good approximations to the corresponding binomial expansion
under the conditions

1. n is large

2. p is small

3. np = λ (λ constant)

The Poisson approximation to the binomial distribution is summarized below.

Key Point 6

Poisson Approximation to the Binomial Distribution

Assuming that n is large, p is small and that np is constant, the terms

P(X = r) = nCr(1 − p)n−rpr

of a binomial distribution may be closely approximated by the terms

P(X = r) = e−λ λr

r!

of the Poisson distribution for corresponding values of r.

HELM (2008):
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Example 12
We introduced the binomial distribution by considering the following scenario. A
worn machine is known to produce 10% defective components. If the random vari-
able X is the number of defective components produced in a run of 3 components,
find the probabilities that X takes the values 0 to 3.

Suppose now that a similar machine which is known to produce 1% defective
components is used for a production run of 40 components. We wish to calculate
the probability that two defective items are produced. Essentially we are assuming
that X ∼ B(40, 0.01) and are asking for P(X = 2). We use both the binomial
distribution and its Poisson approximation for comparison.

Solution

Using the binomial distribution we have the solution

P(X = 2) = 40C2(0.99)40−2(0.01)2 =
40 × 39

1 × 2
× 0.9938 × 0.012 = 0.0532

Note that the arithmetic involved is unwieldy. Using the Poisson approximation we have the solution

P(X = 2) = e−0.4 0.42

2!
= 0.0536

Note that the arithmetic involved is simpler and the approximation is reasonable.

Practical considerations
In practice, we can use the Poisson distribution to very closely approximate the binomial distribution
provided that the product np is constant with

n ≥ 100 and p ≤ 0.05

Note that this is not a hard-and-fast rule and we simply say that

‘the larger n is the better and the smaller p is the better provided that np is a sensible size.’

The approximation remains good provided that np < 5 for values of n as low as 20.

Mass-produced needles are packed in boxes of 1000. It is believed that 1 needle
in 2000 on average is substandard. What is the probability that a box contains
2 or more defectives? The correct model is the binomial distribution with n =

1000, p =
1

2000
(and q =

1999

2000
).

40 HELM (2008):
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(a) Using the binomial distribution calculate P(X = 0), P(X = 1) and hence P(X ≥ 2):

Your solution

Answer

P(X = 0) =

(
1999

2000

)1000

= 0.60645

P(X = 1) = 1000

(
1999

2000

)999

×
(

1

2000

)
=

1

2

(
1999

2000

)999

= 0.30338

∴ P(X = 0) + P(X = 1) = 0.60645 + 0.30338 = 0.90983 ' 0.9098 (4 d.p.)

Hence P(2 or more defectives) ' 1 − 0.9098 = 0.0902.

(b) Now choose a suitable value for λ in order to use a Poisson model to approximate the probabilities:

Your solution

λ =

Answer

λ = np = 1000 × 1

2000
= 1

2

Now recalcula1 '



In the above Task we have obtained the same answer to 4 d.p., as the exact binomial calculation,
essentially because p was so small. We shall not always be so lucky!

Example 13
In the manufacture of glassware, bubbles can occur in the glass which reduces the
status of the glassware to that of a ‘second’. If, on average, one in every 1000
items produced has a bubble, calculate the probability that exactly six items in a
batch of three thousand are seconds.

Solution

Suppose that X = number of items with bubbles, then X ∼ B(3000, 0.001)

Since n = 3000 > 100 and p = 0.001 < 0.005 we can use the Poisson distribution with λ = np =
3000 × 0.001 = 3. The calculation is:

P(X = 6) = e−3 36

6!
≈ 0.0498 × 1.0125 ≈ 0.05

The result means that we have about a 5% chance of finding exactly six seconds in a batch of three
thousand items of glassware.

Example 14
A manufacturer produces light-bulbs that are packed into boxes of 100. If quality
control studies indicate that 0.5% of the light-bulbs produced are defective, what
percentage of the boxes will contain:

(a) no defective? (b) 2 or more defectives?

Solution

As n is large and p, the P(defective bulb), is small, use the Poisson approximation to the binomial
probability distribution. If X = number of defective bulbs in a box, then

X ∼ P(µ) where µ = n × p = 100 × 0.005 = 0.5

(a) P(X = 0) =
e−0.5(0.5)0

0!
=

e−0.5(1)

1
= 0.6065 ≈ 61%

(b) P(X = 2 or more) = P(X = 2) + P(X = 3) + P(X = 4) + . . . but it is easier to consider:

P(X ≥ 2) = 1 − [P(X = 0) + P(X = 1)]

P(X = 1) =
e−0.5(0.5)1

1!
=

e−0.5(0.5)

1
= 0.3033

i.e. P(X ≥ 2) = 1 − [0.6065 + 0.3033] = 0.0902 ≈ 9%
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2. The Poisson distribution
The Poisson distribution is a probability model which can be used to find the probability of a single
event occurring a given number of times in an interval of (usually) time. The occurrence of these
events must be determined by chance alone which implies that information about the occurrence
of any one event cannot be used to predict the occurrence of any other event. It is worth noting
that only the occurrence of an event can be counted; the non-occurrence of an event cannot be
counted. This contrasts with Bernoulli trials where we know the number of trials, the number of
events occurring and therefore the number of events not occurring.

The Poisson distribution has widespread applications in areas such as analysing traffic flow, fault pre-
diction in electric cables, defects occurring in manufactured objects such as castings, email messages
arriving at a computer and in the prediction of randomly occurring events or accidents. One well
known series of accidental events concerns Prussian cavalry who were killed by horse kicks. Although
not discussed here (death by horse kick is hardly an engineering application of statistics!) you will
find accounts in many statistical texts. One example of the use of a Poisson distribution where the
events are not necessarily time related is in the prediction of fault occurrence along a long weld -
faults may occur anywhere along the length of the weld. A similar argument applies when scanning
castings for faults - we are looking for faults occurring in a volume of material, not over an interval
if time.

The following definition gives a theoretical underpinning to the Poisson distribution.

Definition of a Poisson process
Suppose that events occur at random throughout an interval. Suppose further that the interval can
be divided into subintervals which are so small that:



Key Point 7

The Poisson Probabilities

If X is the random variable

‘number of occurrences in a given interval’

for which the average rate of occurrence is λ then, according to the Poisson model, the probability
of r occurrences in that interval is given by

P(X = r) = e−λ λr

r!
r = 0, 1, 2, 3, . . .

Using the Poisson distribution P(X = r) = e−λ λr

r!
write down the formulae for

P(X = 0), P(X = 1), P(X = 2) and P(X = 6), noting that 0! = 1.

Your solution

P(X = 0) =

P(X = 1) =

P(X = 2) =

P(X = 6) =

Answer

P(X = 0) = e−λ × λ0

0!
= e−λ × 1

1
≡ e−λ P(X = 1) = e−λ × λ

1!
= λe−λ

P(X = 2) = e−λ × λ2

2!
=

λ2

2
e−λ P(X = 6) = e−λ × λ6

6!
=

λ6

720
e−λ
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Calculate P(X = 0) to P(X = 5) when λ = 2, accurate to 4 d.p.

Your solution

Answer

r 0 1 2 3 4 5
P(X = r) 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361

Notice how the values for P(X = r) in the above answer increase, stay the same and then decrease
relatively rapidly (due to the significant increase in r! with increasing r). Here two of the probabilities



Example 15
Calculate the value for P(X = 6) to extend the Table in the previous Task using
the recurrence relation and the value for P(X = 5).
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Example 17
The mean number of bacteria per millilitre of a liquid is known to be 6. Find the
probability that in 1 ml of the liquid, there will be:

(a) 0, (b) 1, (c) 2, (d) 3, (e) less than 4, (f) 6 bacteria.







Exercises

1. Large sheets of metal have faults in random positions but on average have 1 fault per 10 m2.

What is the probability that a sheet 5 m × 8 m will have at most one fault?

2. If 250 litres of water are known to be polluted with 106 bacteria what is the probability that a
sample of 1 cc of the water contains no bacteria?

3. Suppose vehicles arrive at a signalised road intersection at an average rate of 360 per hour and
the cycle of the traffic lights is set at 40 seconds. In what percentage of cycles will the number
of vehicles arriving be (a) exactly 5, (b) less than 5? If, after the lights change to green, there
is time to clear only 5 vehicles before the signal changes to red again, what is the probability
that waiting vehicles are not cleared in one cycle?

4. Previous results indicate that 1 in 1000 transistors are defective on average.

(a) Find the probability that there are 4 defective transistors in a batch of 2000.

(b) What is the largest number, N , of transistors that can be put in a box462(t)462i003a65 521 0 (in)-462(a)-461(b)-27(o)27(327(a)28(rs)1(0.)n9 564.103raF(d)-1(efective)-3c85.15547(no)-32d7(ef)-efecti(rs)-327(rs)-32that)-32(clmost)-321/-3c2le?
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Exercises continued
10. A factory uses tools of a particular type. From time to time failures in these tools occur and

they need to be replaced. The number of such failures in a day has a Poisson distribution with
mean 1.25. At the beginning of a particular day there are five replacement tools in stock. A
new delivery of replacements will arrive after four days. If all five spares are used before the
new delivery arrives then further replacements cannot be made until the delivery arrives.
Find

(a) the probability that three replacements are required over the next four days.

(b) the expected number of replacements actually made over the next four days.

Answers

1. Poisson Process. In a sheet size 40 m2 we expect 4 faults

∴ λ = 4 P(X = r) = λre−λ/r!

P(X ≤ 1) = P(X = 0) + P(X = 1) = e−4 + 4e−4 = 0.0916

2. In 1 cc we expect 4 bacteria(= 106/250000) ∴ λ = 4

P(X = 0) = e−4 = 0.0183

3. In 40 seconds we expect 4 vehicles ∴ λ = 4

(a) P (exactly 5) = λ5e−λ/5! = 0.15629 i.e. in 15.6% of cycles

(b) P (less than 5) = e−λ

[
1 + λ4 +

λ2

2!
+

λ3

3!
+

λ
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The calculations involved when using the hypergeometric distribution are usually more complex than
their binomial counterparts.

If we sample without replacement we may proceed in general as follows:

• we may select n items from a population of N items in NCn ways;

• we may select r defective items from M defective items in MCr ways;

• we may select n − r non-defective items from N



It is possible to derive formulae for the mean and variance of the hypergeometric distribution. How-
ever, the calculations are more difficult than their binomial counterparts, so we will simple state the
results.

Key Point 11

Expectation and Variance of the Hypergeometric Distribution

The expectation (mean) and variance of the hypergeometric random variable
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In the manufacture of car tyres, a particular production process is know to yield 10
tyres with defective walls in every batch of 100 tyres produced. From a production
batch of 100 tyres, a sample of 4 is selected for testing to destruction. Find:

(a) the probability that the sample contains 1 defective tyre

(b) the expectation of the number of defectives in samples of size 4

(c) the variance of the number of defectives in samples of size 4.

Your solution

Answer
Sampling is clearly without replacement and we use the hypergeometric distribution with
N = 100, M = 10, n = 4, r = 1 and p = 0.1. Hence:

(a) P(X = r) =
MCr × N−MCn−r

NCn

gives

P(X = 1) =
10C1 × 100−10C4−1

100C4

=
10 × 117480

3921225
≈ 0.3

(b) The expectation is E(X) = np = 4 × 0.1 = 0.4

(c) The variance is V(X) = np(1 − p)
N − M

N − 1
= 0.4 × 0.9 × 90

99
≈ 0.33

HELM (2008):
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Answer

(a) Let X = the numbers of defectives in a sample. Then

P(X = d) =
45C10−d × 5Cd

50C10

Hence

P(X = 0) =
45C10 × 5C0

50C10

= 0.311 P(X = 1) =
45C9 × 5C1

50C10

= 0.431

P(X = 2) =
45C8 × 5C2

50C10

= 0.210 P(X = 3) =
45C7 × 5C3

50C10

= 0.044

P(X = 4) =
45C6 × 5C4

50C10

= 0.004 P(X = 5) =
45C5 × 5C5

CC



Answer

(a) Let the number of below-standard components in the sample be X. The probability of
acceptance is

P(X = 0) + P(X = 1) =

(
14
5

) (
6
0

)
(

20
5

) +

(
14
4

) (
6
1

)
(

20
5

)
=

14
5

× 13
4

× 12
3

× 11


